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Abstract: It is well-known that both object-oriented paradigm and Petri net theory
are two powerful frameworks used to specify complex systems, each of them having
specific advantages. In recent years, several proposals tried to associate them into
a single framework which combine the expressive power of both approaches. This
paper presents a Petri net formalism called Object Oriented High Level Petri
Nets (OOHLPN), and its connection with object-oriented methodologies. One
important feature of the OOHLPN formalism is treatment of the inheritance
and subtyping notions. OOHLPNs use distinct hierarchies for subtyping and
subclassing, the connection between a type hierarchy and an associated inheritance

hierarchy being a conformance relation.
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1. INTRODUCTION

During recent years, several formalisms have been
developed based on merging Petri net formalisms
and the object-oriented paradigm, which preserve
the advantages of both paradigms.

Battiston and De Cindio (Battiston et al., 1988)
include the algebraic data types into Petri net for-
malism. OBJSA does not include the notion of in-
heritance, but this issue is addressed in the deriva-
tive language CLOWN (Batiston et al., 1996)
where inheritance is supported by adding at-
tributes, by redefinition of methods and by re-
quiring an ST-preorder relationship between the
corresponding state machine nets.

Another formalisms proposed by Sibertin-Blanc
and Bastide (Bastide et al., 1993) are Cooperative
Objects, and their successor Cooperative Nets. A
Cooperative Object posses a type, an identity and
a state, while a class of consists of an interface
which declares the services provided by the class,
and an implementation which details how services
are realized.

Biberstein (Biberstein and Buchs, 1995) proposed
a formalism called CO-OPN that extends the use
of algebraic data types to include the communica-
tion structures. An extended version of CO-OPN,
called CO-OPN/2 (Biberstein et al., 2001) adds
new features, like a synchronization mechanism
and the definition of sub-typing based on bisimu-
lation.

Another approach is taken by Lakos and Keen
in LOOPN (Lakos, 1994), which is a textual
language based on the Object Petri Net formalism
(OPN). OPN is an extension of Coloured Petri
nets, representing a single unified class hierarchy
which allows inheritance and polymorphism.

In this paper we define the Object Oriented
High Level Petri Nets (OOHLPN) and their con-
nections with object-oriented methodologies. The
formalism of OOHLPN is based on the forth-
coming ISO High-Level Petri Net (HLPN) stan-
dard (ISO/IEC, 2002) and on concepts from alge-
braic specifications (Ehrig and Mahr, 1985; Wirs-
ing, 1990).



2. INTERFACES AND TYPES

In the OOHLPN formalism we make a difference
between data types, which are non object-oriented
types (either simple types as integers, strings, etc.,
or composed types as lists, etc.), and object types,
which are specific to object-oriented applications.

Throughout this paper, we assume a universe U,
which includes several disjoints sets:

U=SORTUOIDUVARUMETH

where SORT is the set of all sorts, OID is the
set of all identifiers associated to objects, VAR is
the set of variable names, and M ETH is the set
of public method names of object types. The set
OID contains the constant undef, undef € OID,
but undef cannot be associated to any object.
The set of sorts, SORT, is partitioned in three
disjoint sets, SORTp, SORTo, and SORTR.¢,
corresponding to the names of non object-oriented
data types, the names of object types and the
names of reference types respectively.

It is widely recognized that subtyping inheritance
are orthogonal mechanisms, concerned with the
manipulation of types and implementations, re-
spectively (Cook et al., 1990; Taivalsaari, 1996).
Nevertheless, a majority of the modern object-
oriented programming languages and formalisms
have opted for the unification of the notions of
type and implementation into a single concept.

In the OOHLPN formalism we separate the notion
of a class into its two distinct elements:

e interface, which is used to define an object
type;

e implementation module, which is used to
specify an object type implementation.

In order to specify the methods of objects, the set
METH is considered as a sorted set:

(METHew,s)ee SORTR. ; weSORT*,se SORTU{ e}

For each method name m € METHg,, s, C repre-
sents the reference type to the object containing
the method, w is the sequence of sorts represent-
ing the input values, and s is the sort of the
returned value, with the property that ws # ¢
(a method must have at least an input value or a
returned value).

In order to safely integrate the concepts of co-
variant or contravariant specialization of inher-
ited methods, OOHLPN uses encapsulated multi-
methods and a multi-dispatching mechanism for
messages (Bruce et al., 1996), (Castagna, 1995),
instead of ordinary methods and a single dispatch-
ing mechanism. An encapsulated multi-method is
an overloaded method associated with an object
type, which contains several methods (branches)
having the same name. We use some notions

and definitions taken from (Bruce et al., 1996),
(Castagna, 1995), adjusted to our formalism.

Given an object type ¢, m is the name of an
encapsulated multi-method of ¢ containing n
branches, if there exists wq,...,w, € SORT* and
S1y--,8, € SORT U {e} such that:

m € (| MET Hz, s,

i=1

In order to allow OOHLPN using a subtyping
hierarchy, a type must be associated to each
encapsulated multi-method. Let ¢ be an object
type and m € (,_, MET H,, s, an encapsulated
multi-method name of ¢ with n branches. The
type of m can be denoted as

{éw) — s1,...,¢w, — s, }

where éw; — s; is the function type of the i*"
branch of m.

The creation of objects can be viewed as calling
a special method, create, of the corresponding
object type. An object type may contain several
create methods, but these methods do not rep-
resent an encapsulated multi-method. The main
difference between a branch from an encapsulated
multi-method and a create method concerns the
moment when a called method is determined: in
the case of multi-methods the dynamic (or late)
binding is used, whereas in the case of create
methods the static binding is used. From syntacti-
cal point of view, the create methods of an object
type have a form similar to an encapsulated multi-
method:
(create, tereate)

where tcreqte represent the type of the set of
methods.

Remark. There are no destroy methods in the
OOHLPN formalism, because a garbage-collector
mechanism is used.

In the OOHLPN formalism the weak form of sub-
stitutability principle is used because interfaces
are defined at syntactic level. Also, OOHLPNs
use the notion on named subtyping instead of
structural subtyping because of its simplicity. In
this case the subtype hierarchy is declared explic-
itly: an interface associated to a object type must
declare all its supertypes.

Definition 2.1. Let ¢ be an object type. An inter-
face, Intf, defining ¢ is a tuple

Intf = (¢, <%, Mt,Create)
where:

e ¢ is the name of the interface;

e <%C{(c,s) | s € SORTpy} is a partial order
specifying the subtype relation associated to
¢



e Mt C MMETH(c) is a finite set of encap-
sulated multi-methods of c.

o Create = (create,toreqte) is the set create
methods of c.

The set of all interfaces is denoted by INTF.

The map ObjType is used to associate to each
interface its object type:

ObjType : INTF — SORToy
ObjType(Intf) = c, if Intf = (¢, <5 Mt, Create)

The subtype relation is related to the notion of
type and it relies on the substitution principle
(Wegner and Zdonik, 1988).

In order to compare the sorts of function types the
subtyping relation for function types is used. This
relation require a contravariant rule (Cardelli,
1988). Let u,v € SORT*, and s,t € SORT. If
v < u and s < t, then for the function type the
following relation on sorts holds:

u—s<v—t

Subtyping relation for function types allows to
define a similar subtyping relation for multi-
methods.

A type of an encapsulated multi-method, t; =
{Gw1 — s1,...,Gwy, — sk}, is a subtype of
another encapsulated multi-method type, to =
{év1 — r1,..., v, — 1y}, if every encapsulated
multi-method of type ¢; also has type to. In other
words, t; < to if for every function type cv; — 7;
from t, there exists a function type Gw; — s;
from t; such that:

c}wi — 8 < ég’l}j — T

The OOHLPN formalism uses the notion of deep
subtyping (Castagna, 1995) and the weak princi-
ple of substitution to define the subtype relation
between object types.

Definition 2.2. Let Intf, = (c1, <7, Mty,Create,)
and Intfy = (co, <5, Mty, Creates) be two inter-
faces defining the object types ¢; and co, with

Mty = {(a1,p1),- -, (@n,pn)}
Mt2 = {(517Q1)»~ i) (bkan)} .

The object type co is a subtype of c1, or ¢; is a
supertype of co, if the following relations hold:

(a) the subtype relation must be explicitly de-
fined in the interface Intfy: (c2,c1) € <5;

(b) the subtype t2 has at least all the messages of
the supertype t1: {a1,...,a,} C {b1,...,br};

(¢) multi-methods of t5 may have subtypes of the
corresponding multi-methods of ¢; with the
same name: a; = b; implies p; < g;.

Additionally, some restrictions on a set of inter-
faces have to be imposed in order to define a
coherent set of object types. Let IT be a set
of interfaces. The first requirement prevents two
distinct interfaces to be associated with the same
object type:

Intf;, Intf; € I'T with ¢ # j implies
ObjType(c;) # ObjType(c;)

Because OOHLPN don’t use suctructural subtyp-
ing, the second requirement prevents an object
type to be defined as a subtype of itself. Let <%
representing the set of all subtype relations from

IT:
S _ S
<fr= U <
(¢,<5,Mt,Create)elT

The set §}gT determines the subtype graph as-
sociated to IT, and the second requirement con-
straints this directed graph to be acyclic. A set
of interfaces I'T is well-defined if IT verifies the
above two requirements.

A root of a well-defined set of interfaces IT is
an interface, Intf = (¢, <%, Mt,Create), with no
ancestors, so that <%= ().

3. MODULES AND IMPLEMENTATIONS

An implementation provides the realization of
an object type behavior, and it defines a set
(or class) of objects having the same internal
structure and behavior. Because we separated
the notions of type and implementation, we use
the term implementation module instead of class.
An implementation module I'mpl implements an
object type c if every instance of Impl belongs to
the object type c.

The implementation module of an object type
is realized in the OOHLPN formalism by using
a class of Petri nets called Extended High-Level
Petri Net with Objects (EHLPNO), which rep-
resent high level Petri nets enriched with some
object orientation concepts, such as creating new
objects inside transitions when they fire, and call-
ing public methods of objects inside transitions.

In OOHLPNS to each method or branch from an
encapsulated multi-method corresponds a subnet
contained in its associated Petri net, having an
input place which stores the input values of the
method, and an output place where the returned
values are presented.

All input places of the branches oh an encap-
sulated multi-method (m,t) are connected to a
unique input place of the multi-method denoted
by #m, and all output places are connected to a
unique output place denoted by m#. The input



place of m has no input arcs, *#m = (), while its
output place has no output arcs, #m® = (.

In order to keep atomic actions inside transitions,
two types of actions concerning method (or ser-
vice) calls will be considered. Let ¢ be a transition
and z € Var(t) a variable associated to an object
ob, which bound to its object identifier. A send
action is a syntactical construction having the
following form:

z.m(ag,...,an)

and a retrieve action is a syntactical construction
having the following form:

b—xm

where m is the name of a method of the object
ob, ay,...,a, € TERM(O UYV) are expressions
containing input variables of ¢, and b is an output
variable of £. The set of all method calls is denoted
by MC.

A general assignment action of the form

b—xzm(ay,...,an)

must be divided in two actions associated with two
distinct transitions: a first transition containing
a send action, an intermediate place waiting for
the result, and a second transition containing a
retrieve action, as presented in Figure 1.

b«—xz.m

z.m(ay,. .., a,)

Fig. 1. Subnet representing an assignment action
with a method call

In order to specify the creation of objects inside
of a transition ¢, the following syntactical form
representing an instruction for creating objects
can be used:

(variable) = new (sort)((params))

where (variable) € VarOut(t) — VarIn(t) rep-
resents a variable associated to the newly created
object, {params) is a list of expressions containing
input variables of ¢, and sort € SORTp, is the
object type of the created object. Because objects
in the OOHLPN formalism are used through ref-
erences, the variable associated with a creation in-

struction must have a reference type, (variable) €
SORTRey.

The set of all object creation instructions is de-
noted by CREATE.

The creation of an object can be viewed as calling
the special method, create, of the corresponding
object type. The subnet associated to a create

method plays an important role when a new ob-
ject is created. Because the initial marking the
places of the Petri net associated to an imple-
mentation module may contain references to some
objects, the create methods must create the ob-
jects used in these initial markings. Unlike encap-
sulated multi-methods, each create method from
an implementation module has its own input and
output places.

Another action which can be associated to a tran-
sition is an assignment. Let ¢t be a transition
from a High-Level Petri net with an associated
signature Sig = (5,<,0) and a set, V, of vari-
ables. An assignment action for t is a syntactical
construction having the following form:

V<€

where v € VarOut(t) is a variable having a sort
s € SORTp, and e is an expression with the
same sort, e € TERM (O U V),. The set of all
assignments is denoted by ASS.

In order to define Fxtended High-Level Petri Net
with Objects, each EHLPNO is associated with a
signature, but some elements from an EHLPNO
such as method calls and object creation can use
sorts not locally defined in the signature. For this
reason the profiles of method calls, object creation
and inheritance relations are defined over a set of
signatures and a set of class interfaces.

Definition 3.1. Let SG be a set of order-sorted
signatures, I'T a set of interfaces, Sig € SG, Sig =
(S,<,0) a Boolean order-sorted signature, and
H = (Sy,<,0px) an order-sorted Sig-algebra. An
Extended High-Level Petri Net with Objects is a
tuple:

Ehlpno = (NG, Sig,V, H, Sort, An, Ac, F P, my),
where:

(i) NG = (P,T;F) is the net graph with;

(ii) V is an S-indexed set of variables, disjoint
from O;

(iii) Sort : P — S is a function which assigns
sorts to places;

(iv) An = (a,TC) is the net annotation:

-a:F — TERM(OUYV) is a function
that annotates each arc with a term of
the same sort as that of the associated
place;

- TC:T — TERM(OUV)pBye is a guard
function that annotates each transition
with a Boolean term expression;

(v) Ac: T — CREATEUMCUASSU{undef}
is the action net annotation;

(vi) FP € VAR*, FP = (FP,,...,FP,), with
n > 0, is a sequence of S-indexed variables,
disjoint from V', such that if n > 0, then
FP = |J]_, FP; represents the set of for-



mal arguments used in the initial parametric
marking mo; if n =0, then FP = 0.

(vii) mg : P — TERM(OUFP) such that Vp € P,
mo(p) € TERM(OUFP)gopyp) is the initial
parametric marking having the same sort as
the place.

The set of all Extended High-Level Petri Nets with
Objects is denoted by EHLPNO.

The notion of the implementation module offers
support for the definition of the inheritance con-
cept. In the OOHLPN formalism only single in-
heritance relation is supported. In the following,
IMPL will denote the set of all implementation
modules.

Definition 3.2. Let SG be a set of order-sorted
signatures, Sig € SG a Boolean order-sorted
signature, Sig = (5,<,0), H = (Sg,<,0n)
an order-sorted Sig-algebra, IT a set of well-
defined interfaces, Intf € IT an interface, Intf =
(¢, <%, Mt,Create), defining the object type c. An
implementation module of the interface Intf is a
pair:
Impl = (Ehlpno, Intf, Inh)

where:

(i) Ehlpno = (NG, Sig,V, H, Sort, An, Ac, FP,myg)

is an Extended High-Level Petri Net with
Objects;

(ii) Inh € IMPL U {undef} specify implemen-
tation inheritance relation of Impl.

Because methods in OOHLPNs are represented
by subnets from EHLPNOs, the inheritance re-
lation concerns incremental modifications of Ex-
tended High-Level Petri Nets with Objects. In
order to specify the inclusion concept related to
two EHLPNOs, the two order-sorted signatures
associated to the two petri nets must define a
hierarchical signature.

Definition 3.3. Let ¥ = (5,<,0) and ¥ =
(8',<’,0") be two order-sorted signatures. The
signatures ¥ and Y’ define in this order a hier-
archical signature, and it is denoted ¥ <g;, ¥, if
there exists an order-sorted signature morphism
o : X — ¥ such that o(X) is a subsignature of
P

In the following definition of implementation in-
heritance, the notion of function restriction is
used. Given a function, f : A — B, and a subset
A’ C A, the restriction of f to A’ is denoted by
flar

Definition 3.4. Let IT be a set of well-defined
interfaces, IM a set of well-defined modules
that implement interfaces from IT, SG a set

of order-sorted signatures used in the imple-
mentation modules of IM, and Impl, Impl’ €
IM, Impl = (Ehlpno,Intf,Inh) and Impl’ =
(Ehlpno’, Intf’, Inh’) two implementation mod-
ules, with:

Ehlpno = (NG, Sig,V, H, Sort, An, Ac, F P, m)

Ehlpno’ = (NG', Sig’, V', H', Sort’, An', Ac', FP',m{)

The implementation Impl’ inherits Impl and it is
denoted I'mpl’ <; I'mpl iff the following relations
hold:

(a) Inh' = Intf;
) Sig <sig Sig';
yPCP, TCT, FCF
(d) VoV,
) Sort'|p = Sort;
) d|p =a, TC'|lp = TC, provided that An =
(a,TC) and An' = (a/,TC");
(g) Ad|r = Ag;
(h) FP C FP’, where FP represents the set con-
structed from the elements of the sequence
F P, as in Definition 3.1;
(i) mglp = mo.

4. OBJECT ORIENTED HIGH LEVEL PETRI
NETS

The definition of OOHLPN uses the notions of
subtype and inheritance hierarchy.

Definition 4.1. Let IT be a set of well-defined
interfaces, IM a set of well-defined modules that
implement interfaces from I'T. An object-oriented
system associated to IT and I'M is a triple:

OS = (IT,IM, Inst)

where Inst IT — p(OID) is a function
which associates a set of object identifiers to
each object type, such that if Intf;, Intf; €
IT, ObjType(Intf;) # ObjType(Intf;), then
Inst(Inst;)NInst(Inst;) = undef, or Inst(Inst;) C
Inst(Inst;) if ObjType(Inst;) < ObjType(Inst;).

Disregarding the constant undef, Inst(Intf;),i =
1,...,n are disjoint sets in the case of unrelated
implementation, in order to prevent two instances
of unrelated object types to have the same object
identifier. In order to prevent two instances of the
same object type to have the same object identi-
fier, the set of all object identifiers associated to a
object-oriented system has to be structured as an
algebra of object identifiers.

Definition 4.2. Let OS = (IT,IM,Inst) be a
object-oriented system as in the above definition.
An Object Oriented High Level Petri Net associ-
ated to OS is a triple:

Oohlpn = (OS, Int fy, 0idy)



where Intfy € IT is a root interface of the
object-oriented system, called the initial object
type of Oohlpn, and oidy € Inst(Intfy) is the
object identifier associated to the initial object of
Oohlpn.

The initial interface Intfy of an OOHLPN is
important when defining the dynamic semantics
of these nets. It represents the higher level of
abstraction for a modelled system, and its initial
object is the unique instance of Int fy, which exists
at the beginning of the dynamic system evolution.

5. CONCLUSION

In this paper, we presented a new class of Petri
nets, called Object Oriented High Level Petri
Nets and their connections with object-oriented
methodologies.

The OOHLPN formalism has been proposed
for the need to encapsulate the object-oriented
methodology into the Petri net formalism. The
main features of the OOHLPN formalism are the
followings:

e Unlike other approaches, the OOHLPN for-
malism is based on the forthcoming ISO
High-Level Petri Net standard and it can
be easily integrated in projects concerning
concurrent and object-oriented systems;

e OOHLPNSs preserve the property of Predi-
cate/Transition nets to be viewed as the rule-
based systems (Murata and Zhang, 1988).
For a rule-based system a behaviorally equiv-
alent OOHLPN can be determined. Because
of this property OOHLPNSs can also be used
to specify rule-based systems;

e The OOHLPN formalism allows two types
of relations: the inheritance relation, which
is syntactically defined, and the subtyping
relation, which is defined based on the sub-
stitutability principle.
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